
 M1G413283: Introduction to Programming 2

 page 1

3. Creating classes: Room and Item

Programming techniques in this chapter:
stepwise refinement, unit testing, documentation, enhanced for loop

Class associations in this chapter:
“has‐a” relationships, “uses‐a” relationships

Interaction between rooms and items .. 1
The Item class in Java .. 2
Implementing the interaction .. 3
Algorithms and stepwise refinement ... 6
Unit testing .. 8
Documentation .. 12
The Player class - using the Item and Room classes .. 15
The enhanced for loop ... 17
Testing the Player class ... 17
What’s next? .. 18

Interaction between rooms and items
In this chapter we will create Java code to implement the Room and Item classes. The
link between a room and its items is similar in some ways to that between the game and
its players. Each room can hold several items, and there is a “has-a” relationship
between Room and Item.

There are some differences, however:

• There will be more than one room in the game world
• Each room may have a different number of items
• We would like to be able to add and remove items from a room as the game

progresses

The interaction will need to be a bit different too. The Item class will have a behaviour
called use, which will perform whatever action the item is used for. Another object can
then send a message to an item by calling the use method. However, it would not make
sense for the room to use the item. What kind of object do you think should use an
item?

The room simply has the job of holding the items, and providing these items to other
objects to use. It can either provide one item (getItem) or its whole set of items
(getItems).

 M1G413283: Introduction to Programming 2

 page 2

We can now add some more detail to the model for these classes. The figure shows the
class diagram for these classes with some additional features based on the description
above.

The Item class in Java

The code for the Item class is shown below. Note that there is one field, description,
which is accessed publicly through getter and setter methods.

/**
 * Class Item
 * Represents an item, in the game
 *
 * @version 1.0
 */
public class Item
{
 // a description of the item
 private String description;

 /**
 * Constructor for objects of type Item
 *
 * @param description value for the description example property
 */
 public Item(String description)
 {
 this.description = description;
 }

room can add an item, get
an item, get all its items
and remove an item

one (1) room, many (*) items

item can be used

no arrow, neither type of
object will send a
message to the other

 M1G413283: Introduction to Programming 2

 page 3

 /**
 * gets the value of description
 *
 * @return the value of description
 */
 public String getDescription()
 {
 return description;
 }

 /**
 * sets the value of description
 *
 * @param description the new value of description
 */
 public void setDescription(String description)
 {
 this.description = description;
 }

 /**
 * use the item by asking it to perform some action
 */
 public void use()
 {
 System.out.format("You are using item: %1$s\n", description);
 }
}

Testing the Item class

You can try creating this class for yourself in BlueJ in the same way as you tested the
Player class previously.

Implementing the interaction

If you look through the code for the Item class, there is no mention of the Room class.
That is because an Item object does not need to communicate with the Room it is in.

As we said before, the Room does not need to communicate with its items. However, it
will need to have the ability to store its items. This interaction can be implemented using
the same “HAS-A(ARRAY)” pattern which we used for Game and Player. Remember
that the solution for that pattern was:

“the class which needs to send the message has a field which is an array of objects
whose type is the name of the other class.”

 M1G413283: Introduction to Programming 2

 page 4

The outline of the Room class looks like this.

public class Room
{
 // a description of the room
 private String description;
 // the maximum number of ITEMS
 private static final int MAX_ITEMS = 20;
 // the number of items currently in the room
 private int numberOfItems;
 // the items in the room
 private Item[] items;

 public Room(String description)
 {
 this.description = description;
 items = new Item[MAX_ITEMS];
 numberOfItems = 0;
 }

 public String getDescription()
 {
 return description;
 }

 public void addItem(Item newItem)
 {
 ...
 }

 public Item[] getItems()
 {
 return items;
 }

 public Item getItem(String description)
 {
 ...
 }

 public boolean removeItem(String description)
 {
 ...
 }
}

We need to specify a size for the array, which is the constant MAX_ITEMS. However, the
array may hold any number of objects up to the maximum, so we also need to keep
track of the number of items which have been added. This will let us make sure that
when we add a new item, it goes into the right place in the array.

 M1G413283: Introduction to Programming 2

 page 5

The array when it is first created contains null references – that is each element in the
array should point to an Item object, but no Item objects have been created yet. When
the first Item is added, the first element of the array will point to it, while the remaining
elements are still null references.

An object diagram for a room and its items might look like this (the array contains two
Items here):

Adding an Item to a Room – the addItem method

Now we need to fill in the details of the methods of the Room class. First, the addItem
method. This simply takes an Item object and sets the next available array element in
items to refer to that object.

 public void addItem(Item newItem)
 {
 if(numberOfItems < MAX_ITEMS) // check array is not full
 {
 items[numberOfItems] = newItem;
 numberOfItems++; // increment by one
 }
 }

Room1:Room

items

items[0]: Item

description

items[1]: Item

Items:Item[]

 [0]

 [1

 [2]

 [3]

description

...up to [20] description

null references

numberOfItems

 M1G413283: Introduction to Programming 2

 page 6

The object diagram would look like this after this method runs:

An example of the use of this method will be within the setup method of the Game, which
might have code like this:

Item newItem = new Item(“torch”); // creates a new Item object
startingRoom.addItem(newItem); // sets next available array element in
 // startingRoom.items to refer to new Item

The getItem and removeItem methods are a little bit more complicated, and will require
a bit of thought to work out the algorithms which are needed to implement them. We will
look at getItem here, and leave removeItem as an exercise.

Algorithms and stepwise refinement
An algorithm is a list of well-defined steps for completing a task. We need to work out
what steps are required to search for a particular Item and to remove a particular Item.

The getItem method must take a string as a parameter, and return the Item in the
items array which has that value of description. How do we find a particular element in
an array? The simplest way to do this is to start at the beginning of the array, and check
each element in turn to see if it is the one we want. This is called a linear search.

We can write the algorithm for the search using pseudocode. Pseudocode is not a real
programming language – it is simply a way of thinking about and writing down what the
steps for an algorithm are without worrying about the details of the actual code until we
are clear about how it will work.

Room1:Room

items

items[0]: Item

description

items[1]: Item

items:Item[]

 [0]

 [1

 [2]

 [3]

description

...up to [20]
description numberOfItems

items[2]: Item

description newItem

reference to new Item object, passed
to Room as a method parameter –
note that more than one reference
can refer to the same object!

 M1G413283: Introduction to Programming 2

 page 7

The algorithm for getItem needs to repeatedly check items until the required one is
found or we run out of items, and a while loop is ideal for this. Here’s a first attempt:

1. while (target not found and end of array not reached)
2. check next item
3. return target item

The step in line 2 looks as if it needs a bit more thought. How do we check the item and
what do we do when the item is the target item? We’ll need to keep count of how far
through the array we get so that the correct item can be returned. We’ll also need to set
a flag which will indicate that the target item has been found.

Let’s refine this algorithm to put a bit more detail in it. The numbering here helps us
keep track of how the lines from the first version have been refined:

1.1 count = 0
1.2 set target not found
1.3. while (not found and end of array not reached)
2.1 if item is target
2.2 set target found
2.3 increment count
3.1 return item from array with index = count

This process of adding more detail to an algorithm is called stepwise refinement. We
have done two steps here, and we’re pretty much ready to write the real Java code. A
more complicated algorithm might require more refinement steps.

These lines look as though they can be translated directly into Java. Here is the code for
getItem:

NOTE

There are no rules for pseudocode, as it is not a real language. It’s just a
way of writing down steps in an algorithm while you’re designing it. Not
everyone uses pseudocode – it’s up to you whether you find it useful or
not.

 M1G413283: Introduction to Programming 2

 page 8

 public Item getItem(String description)
 {
 int i = 0;
 boolean found = false;
 while(!found && i<numberOfItems)
 {
 if(items[i].getDescription().equals(description))
 {
 found = true;
 }
 i++;
 }
 return items[i];
 }

This code looks OK, and it will compile. However, it has at least two serious flaws. Can
you see what they are?1

Before we move on, we really need to do some testing of the Room class to check that
the methods really do what they are supposed to do.

Unit testing

The process of testing an individual class is known as unit testing. This contrasts with
testing the complete program. Unit testing is vitally important in object oriented
programming. Unit tests can be repeated as we continue to develop a class to make
sure that we don’t inadvertently break a part of a class which was already working
correctly.

We’ve already done a little bit of unit testing. We used BlueJ to run some tests on the
first versions of the Player and Game classes. Good unit tests actually need some
careful thought to make sure that they test a class thoroughly in all possible
circumstances.

So far, the Room class has methods to add an item and to get a specified item. Here are
some test cases that we should run. If any of these actions do not produce the desired
result, we will need to revise the code and try again.

• Add items to the array
• Add sufficient items to fill the array
• Try to add an item when the array is full (the desired result is that this should not

work)
• Get an item which is in the array

1 Variable i will have wrong value as it is incremented after target found ; shouldn’t try to return an array
element if the target is not found

 M1G413283: Introduction to Programming 2

 page 9

• Try to get an item which is not in the array when the array is not full, and when it
is full

Creating a test class

The best way to perform unit testing on a class is to use a test class, A test class is a
special kind of class which defines the way a specific model class will be tested. BlueJ
can help you create test classes. It makes use of a test framework called JUnit to do so.

If you right-click on the Room class in the BlueJ class diagram you can select Create Test
Class from the popup menu. A new class called RoomTest will be added to the project –
it will be coloured green in the diagram to show that it is a test class.

Open the RoomTest class for editing. You will see that it has a method called setup().
This method can be edited so that it sets up some test objects. Add instance variables
and code in the setup method as follows. This will create some test objects – a Room and
three Items. It then adds the Items to the Room.

 private Room room1;
 private Item item1;
 private Item item2;
 private Item item3;
...
 protected void setUp()
 {
 room1 = new Room("kitchen");
 item1 = new Item("cooker");
 item2 = new Item("fridge");
 item3 = new Item("knife");
 room1.addItem(item1);
 room1.addItem(item2);
 room1.addItem(item3);
 }

This saves us from creating these objects manually every time a test is run. If we now
right-click on the RoomTest class in the class diagram, we can select the Test Fixture to
Object Bench option. The Room and three Item objects now appear in the Object Bench.
You can inspect the Room to see that the items are there in the items array.

Running a test

Let’s run one of our tests – Get an item which is in the array.

 M1G413283: Introduction to Programming 2

 page 10

Right click on the Room object and select getItem(string description) . Enter the
text “fridge” in the method call dialog and click OK. Click Inspect to have a look at the
Item which is returned in the Method Result dialog.

Wait a minute! That’s the wrong item. Our Room class has failed this test dismally. The
getItem method does return an Item, but it is the wrong one.

Look at the code for getItem – can you see why this is happening? The following
version of the method fixes the problem:

 public Item getItem(String description)
 {
 int i = 0;
 boolean found = false;
 Item target = null;
 while(!found && i<numberOfItems)
 {
 if(items[i].getDescription().equals(description))
 {
 target = items[i];
 found = true;
 }
 i++;
 }
 return target;
 }

Now we can run the same test on the modified Room class – it should pass this time.

Test methods and automated testing

The RoomTest class we have created helps us by setting up the same test objects in the
object bench each time we want to run a test. The actual test was done manually. If we
want to do a lot of tests, this can become very time-consuming. It is often useful to have
a series of tests which are run automatically. We can add test methods to the RoomTest
class which BlueJ can then run automatically.

Let’s add a test method to run the same test as before, but this time to do it
automatically. Add the following method to RoomTest.

 M1G413283: Introduction to Programming 2

 page 11

 public void testGetItem()
 {
 Item target = room1.getItem("fridge");
 assertEquals("fridge", target.getDescription());
 }

assertEquals is a special method used by BlueJ to decide whether a test is passed or
failed. It checks that the actual description value of the Item which is returned
(target.getDescription()) is the same as the expected value, “fridge”. If not, then
the wrong item has been returned, and the test should fail.

BlueJ runs tests automatically when you click the Run Tests button. It runs all test
methods in all test classes which have been added to the current project. This is very
useful when you have a large project with many classes. Sometimes making a change to
the code in one class can cause another related class not to work correctly. Testing the
whole project regularly ensures that this kind of problem is discovered quickly. This is
called regression testing.

At the moment we only have one test class with one test method. If we click Run Tests,
the testGetItem test method will run, and the result is shown in the Test Results
window. The solid bar is coloured green to indicate a pass, and changes to red if any
test does not pass.

If we run the test on a version of Room with the first, incorrect, version of the getItem
method, then the test fails and we can see the details of the failure in the Test Results
window:

 M1G413283: Introduction to Programming 2

 page 12

Documentation

A Java object in an object-oriented program is likely to be used by other objects. For
example, in the completed game, an Item object will be used by a Player object. The
interface of a class specifies how objects of that class may be used.

The interface of a class consists of:

• Public fields – fields declared with the public key word
• Public methods – methods defined with the public key word

It does not include

• Private fields – if values of private fields need to be accessed or updated by
other objects then there should be public getter and/or setter methods

• Private methods – some methods may be used by the public methods in a class
but are not themselves available for other objects to use

It is helpful to designers of classes which use your class if you take time to carefully
document the interface of your class. Documentation is done by writing Javadoc

NOTE

BlueJ uses a popular unit test framework called JUnit to run tests. JUnit is
an important tool for Java programming, and is also built into many other
Java IDEs.

 M1G413283: Introduction to Programming 2

 page 13

comments in your code. An example of documentation for the getItem method in Room
is shown below:

 /**
 * Returns the item with a specified description
 *
 * @param description the description of the specified item
 * @return the specified item
 */
 public Item getItem(String description)
 {
 int i = 0;
 boolean found = false; // flag to indicate if item has been found
 Item target = null;

 // loop until found or all items checked
 while(!found && i<numberOfItems)
 {
 if(items[i].getDescription().equals(description))
 {
 target = items[i];
 found = true;
 }
 i++;
 }
 return target;
 }

Viewing documentation

Javadoc comments can be used by the Javadoc tool to automatically generate a set of
HTML pages which document a single class or an entire programme. They are also
used by the BlueJ editor when you choose to view a class as Documentation instead of
Source Code.

BlueJ then shows the HTML documentation page for the class.

start of Javadoc comment /**

parameters and return value

code comments – explain
how code works but not
part of documentation

 M1G413283: Introduction to Programming 2

 page 14

The Javadoc comment in the listing above produces the following content in the
documentation page:

Code comments

Not all comments in code are used for documentation. Ordinary code comments like
those indicated in the listing (the ones which don’t start with /**) are there to explain how
the code works. Those comments are there to help someone who may, for example,
have to modify the code later on. They are not there to help the programmer who is
writing code which uses the Room class.

To use the Room class it is only necessary to know that it has a getItem method which
takes a description as a parameter and returns an Item – it is not necessary to know
how the getItem method actually does its job. This is a bit like driving a car – you need to

 M1G413283: Introduction to Programming 2

 page 15

know, for example, that it has a brake pedal which causes the car to slow down if you
press it. You don’t need to know how the brake mechanism works.

Code comments do not appear in the documentation. Private fields are often described
with code comments to explain their purpose.

The Player class - using the Item and Room classes

We have now created and tested initial versions of the Room and Item classes. These
classes exist in the game because a Player needs to be located in a Room and can use
Items in the room. The Player class therefore needs to be able to interact with Room and
Item.

Let’s add the Player class to the class diagram which was shown earlier in this chapter:

Player and Room

A Player object needs to maintain an association with the current room in which the
player is located. This is an example of the “has-a” code pattern which we have seen
before:

player is linked to current
room

player can use an item

 M1G413283: Introduction to Programming 2

 page 16

CODE PATTERN: “HAS‐A”

Problem: how do you implement a “has‐a” relationship, where a “whole” object needs to
send messages to its “part” objects?

Solution: the class which needs to send the message has a field whose type is the name of
the other class.

What message will a Player object need to send to a Room object? Well, the room
stores an array of items, so the player may need to ask the room for to provide it with a
list of the available items, and a reference to the specific Item object it wants to use.

The association between Player and Room will therefore be implemented by having a
field of type Room in the Player class.

public class Player {

 // the player's name
 private String name;
 // the room in which the player is currently located
 private Room currentRoom;

Player and Item

A Player object does not need to own any items (these belong to a room, not a player),
but it may need to use an Item object. This is an example of a new coding pattern:

CODE PATTERN: “USES‐A”

Problem: how do you implement a “uses‐a” relationship, where an object needs to send a
message to another object with which it has no ongoing relationship.

Solution: the class which needs to send the message has a method parameter or local
variable whose type is the name of the other class.

This type of association is a bit like booking a holiday through a travel agent. You use
the agent to making the booking, and you then own that booking – however, you have
no link to the agent once the booking has been made.

 M1G413283: Introduction to Programming 2

 page 17

The association is implemented in the takeTurn method of Player:

 public void takeTurn()
 {
 System.out.println("Player " + name + " taking turn...");
 Item[] items = currentRoom.getItems();
 for(Item it : items)
 {
 if(it!=null)
 it.use();
 }
 }

Note the following features of this method:

1. A message is sent to the currentRoom object, calling its getItems method
2. An array of Item objects is obtained as a result – this is a local variable, and

each Item in the array is itself accessed individually as a local variable.
3. Each Item object is used in turn, by calling its use method

The enhanced for loop
Note in the above code the simplified version of the for loop which is useful for
stepping through all the elements in an array.

 for(Item it : items)
 {
 // do something with the loop variable, it
 }

In this code, items is the array, and the loop steps through the elements of the array.
The loop variable, it, always refers to the current element of the array each time round
the loop. The loop variable type is the same as the type of the data stored in the array,
Item in this case. There is no need to specify an end condition or to initialise and
increment a counter variable

Testing the Player class
You can test the Player class as follows:

• Create a Room object
• Create some Item objects and add these to the Room you have created
• (these could be the same Room and Item objects as we used to test Room)
• Create a Player object
• Call the setCurrentRoom method of the Player, providing the Room you have

created as its parameter

1 2

3

 M1G413283: Introduction to Programming 2

 page 18

• Call the takeTurn method of the Player object

The output should be something like the following. Look at the code for Item and
Player to see if you can work out which method produces each line of output.

What’s next?
In the next chapter we will use Java library classes to improve the implementation of
Room, and make it possible for rooms to be connected together to make a “world”

NOTE

The complete code for the classes we have created so far can be
downloaded from your course website.

